Toposes Are Adhesive
نویسندگان
چکیده
Adhesive categories have recently been proposed as a categorical foundation for facets of the theory of graph transformation, and have also been used to study techniques from process algebra for reasoning about concurrency. Here we continue our study of adhesive categories by showing that toposes are adhesive. The proof relies on exploiting the relationship between adhesive categories, Brown and Janelidze’s work on generalised van Kampen theorems as well as Grothendieck’s theory of descent.
منابع مشابه
Cocomplete toposes whose exact completions are toposes
Let E be a cocomplete topos. We show that if the exact completion of E is a topos then every indecomposable object in E is an atom. As a corollary we characterize the locally connected Grothendieck toposes whose exact completions are toposes. This result strengthens both the Lawvere–Schanuel characterization of Boolean presheaf toposes and Hofstra’s characterization of the locally connected Gro...
متن کاملExact completions and toposes
Toposes and quasi-toposes have been shown to be useful in mathematics, logic and computer science. Because of this, it is important to understand the different ways in which they can be constructed. Realizability toposes and presheaf toposes are two important classes of toposes. All of the former and many of the latter arise by adding “good” quotients of equivalence relations to a simple catego...
متن کاملMolecular Toposes*
In [2], Barr and Diaconescu characterized those Grothendieck toposes 8 for which the inverse image, A, of the geometric morphism r: 8 + Yet, is logical. It was shown (among other things) that this happens precisely when the lattice of subobjects of every object of 8 is a complete atomic boolean algebra. Toposes satisfying this property are called atomic. These results were relativised to the ca...
متن کاملPartial Toposes Jean Bénabou and Thomas Streicher
We introduce various notions of partial topos, i.e. “topos without terminal object”. The strongest one, called local topos, is motivated by the key examples of finite trees and sheaves with compact support. Local toposes satisfy all the usual exactness properties of toposes but are neither cartesian closed nor have a subobject classifier. Examples for the weaker notions are local homeomorphisms...
متن کاملThe Gleason Cover of a Realizability Topos
Recently Benno van den Berg [1] introduced a new class of realizability toposes which he christened Herbrand toposes. These toposes have strikingly different properties from ordinary realizability toposes, notably the (related) properties that the ‘constant object’ functor from the topos of sets preserves finite coproducts, and that De Morgan’s law is satisfied. In this paper we show that these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006